Event Log Extraction for Process Mining
Using Large Language Models*

Vinicius Stein Dani!, Marcus Dees?, Henrik Leopold?, Kiran Busch?,
Iris Beerepoot!, Jan Martijn E. M. van der Werf!, and Hajo A. Reijers!

! Utrecht University,
Princetonplein 5, 3584 CC, Utrecht, The Netherlands
{v.steindani,i.m.beerepoot,j.m.e.m.vanderwerf ,h.a.reijers}@uu.nl
2 Uitvoeringsinstituut Werknemersverzekeringen,
Amsterdam, The Netherlands
marcus.dees@uwv.nl
3 Kiihne Logistics University,
Grofer Grasbrook 17, 20457 Hamburg, Germany
{henrik.leopold,kiran.busch}@the-klu.org

Abstract. Process mining is a discipline that enables organizations to
discover and analyze their work processes. A prerequisite for conduct-
ing a process mining initiative is the so-called event log, which is not
always readily available. In such cases, extracting an event log involves
various time-consuming tasks, such as creating tailor-made structured
query language (SQL) scripts to extract an event log from a relational
database. With this work, we investigate the use of large language mod-
els (LLMs) to support event log extraction, particularly by leveraging
LLMs ability to produce SQL scripts. In this paper, we report on how
effectively an LLM can assist with event log extraction for process min-
ing. Despite the intrinsic non-deterministic nature of LLMs, our results
show the potential of future LLM-assisted event log extraction tools,
especially when domain and data knowledge are available. The imple-
mentation of such tools can increase access to event log extraction to a
broader range of users within an organization by reducing the reliance
on specialized technical skills for producing relational database query
scripts-and minimizing manual effort.

Keywords: Process mining - Event log extraction - Relational database
- Prompt engineering - Large language model - LLM - Assistance.

1 Introduction

Process mining is a discipline that helps organizations to discover and analyze
their work processes [2]. A prerequisite for conducting any process mining initia-
tive is the so-called event log, which is not always readily available. When it is

* Accepted manuscript on September 25, 2024, to the 30th International Conference
on Cooperative Information Systems (CooplS).



2 Stein Dani et al.

not, extracting an event log involves laborious, time-consuming tasks [I9]. The
event log extraction is particularly challenging when an organization needs to ex-
tract event logs for continuously changing purposes. For instance, new demands
emerging from various departments can make the replication of event log extrac-
tion strategies impractical. In such a situation, new database query scripts must
be designed for each demand, which further increases the time needed for event
log extraction. As a result, organizations have to wait longer to gain insights
from their data.

Large language models (LLMs) emerged as tools capable of analyzing and
generating text, offering potential applications in different domains and research
fields [ITJI62T]. These models have demonstrated capabilities in natural lan-
guage processing tasks, including text generation, translation, and summariza-
tion [25I26]. In the context of process mining, studies have shown the potential
and applicability of LLMs [3[12]. For example, in [3] the authors shown the appli-
cability of LLMs to process analysis-related tasks, while in [12] the authors have
demonstrated how LLMs can be used for assisting on process modeling tasks.
Moreover, different studies experimented with using LLMs to map natural lan-
guage questions on a given relational database into ready-to-use SQL queries [9].
Considering this, it may be beneficial to use LLMs for event log extraction, what
has not been explored before.

With this in mind, we argue that SQL query generation from natural lan-
guage text using LLMs can potentially reduce the manual effort required for
event log extraction. We hypothesize that this automation can streamline the
event log extraction process by reducing the dependency on specialized tech-
nical skills from business analysts, making event log extraction more accessi-
ble to a broader range of users within an organization. Although LLMs are
non-deterministic, their flexibility enables a quick adaptation to the continu-
ously changing scenarios of different demands coming from a variety of depart-
ments. We argue that as new data-related requirements emerge, these models
can quickly generate the appropriate relational database queries for event log ex-
traction without the need for major reprogramming efforts. By integrating LLMs
into the event log extraction workflow, having human-computer collaboration,
organizations can increase their ability to quickly extract event logs, thereby
gaining timely insights and getting more quickly to their decision-making mo-
ments based on the discovered process.

Against this background, we develop this work to answer the following re-
search question: “How effective are LLMs in assisting the event log extraction
from relational databases?” For this purpose, we assess state-of-the-art LLMs’
performance against a number of structurally different relational databases and
prompt engineering strategies. To do so, we leverage an experimental setup that
executes each available prompt against each available database, extracts the
LLM-generated SQL script from the LLM response, executes the generated SQL
script against the database, and compares the LLM-assisted generated event
log against a gold standard, outputting similarity scores by means of precision,
recall, and Fl-score. Despite the intrinsic non-deterministic nature of LLMs,



Event Log Extraction for Process Mining Using Large Language Models 3

our results show that LLMs (particularly GPT-40) can effectively assist in the
event log extraction from relational databases when domain and data knowledge
are available.

The remainder of this paper is structured as follows. In Section 2] we discuss
the background of this work. Then, in Section 3] we present our experimental
setup. In Section [4] we report on the acquired results of this work, while in
Section [5] we provide a discussion and recommendations based on our findings.
Finally, Section [6] concludes the paper.

2 Background

In this section, we first provide a brief introduction into process mining. Then,
we discuss LLMs and prompt engineering strategies.

2.1 Process Mining

Process mining is a discipline that enables organizations to discover and ana-
lyze their work processes. This is possible by leveraging the available data in an
event log format. In its simplest form, an event log is a comma-separated file
containing a list of events with at least the following three attributes: CaselD,
ActivityID, and timestamp. The CaselD represents a process instance, i.e., a
particular trace of the execution of a process; the ActivitylD represents an ac-
tivity that was performed in the context of a particular trace or multiple traces;
and the timestamp represents the exact moment in which an activity was per-
formed [2I14]. For example, consider Table [I} In this table, we have two cases,
A and B, of a purchase-to-pay process. In case A, three activities happened in
the following temporal order “Create purchase order”, “Receive goods”, and “Pay
invoice”. In case B, there are only two activities: “Create purchase order”, and
“Pay invoice”. In this example; one can see that in case B, the goods were not
received, and a root-cause analysis can be conducted to understand whether this
is an expected behavior or not.

What is important to note is that extracting such an event log often requires a
significant amount of manual effort [I9]. It typically involves an iterative process,
in which SQL scripts are developed to integrate all required data in the target
event log.

2.2  Large Language Models and Prompt Engineering

In recent years we have seen the insurgence of a variety of LLMs. Some are
advertised as open-source, without actually sharing training data [I0J22]. Oth-
ers as proprietary, and claim that the data they used to train their models
are public, which is not necessarily always the case [SI7/I8]. What is a com-
monality for all widely available —publicly or privately— LLMs, is their intrinsic
non-deterministic nature. A number of approaches to improve the effectiveness
of LLMs have been produced in the form of prompt engineering strategies. For



4 Stein Dani et al.

example, in [23] the authors propose a prompt engineering strategy titled chain-
of-thought, which breaks down tasks into intermediate steps. In [27], the authors
propose a prompt strategy titled tree-of-thought, which explores multiple rea-
soning paths to respond to a prompt, potentially leading to more robust and
creative solutions. In [4], the authors introduce the few-shot examples prompt
strategy, which uses examples of how a desired task should be performed. In ad-
dition, in [24] the authors present a prompt engineering strategy titled persona,
which elicits how to ask an LLM to behave in a certain way (e.g., as a process
mining expert) while answering to the input prompt. In this work, we leverage
these prompt engineering strategies.

A variety of studies have shown the applicability of LLMs in a number of
domains and purposes [BITTIT6I21], including SQL script generation [9] and pro-
cess mining [3[12]. To the best of our knowledge, what has not been explored is
the applicability of LLMs in assisting the event log extraction. With this work
we provide a robust and methodological assessment of the performance of LLMs
in assisting the event log extraction from relational databases.

3 Experimental Setup

In this section, we describe our experimental setup to assess how effective LLMs
can be in assisting the event log extraction from relational databases. To this
end, in Section we provide an overview of our approach. In Section [3:2] we
present the materials used in this work, which are composed by a number of
LLMs, databases, prompts, and gold standard event logs. Finally, in Section [3.3]
we elaborate on the analysis of the results, i.e., the comparison between a gold
standard event log and its generated counterpart.

3.1 Overview

Figure [T] depicts the architecture of our experimental setup, which expects the
following input objects: (i) an LLM to be evaluated; (ii) a database from which
an event log can be extracted; (iil) a prompt engineering strategy to instruct
an LLM about the event log extraction task; (iv) a gold standard event log to
serve as a benchmark for comparison against the LLM-assisted generated event

Table 1: Example event log.

CaselD | ActivityID Timestamp

A Create purchase order | 2023-10-26 10:17:33
B Create purchase order | 2023-10-27 06:03:19
A Receive goods 2023-10-29 14:36:01
A Pay invoice 2023-10-30 19:03:26
B Pay invoice 2023-11-21 10:14:59




Event Log Extraction for Process Mining Using Large Language Models 5

Input LLM SQL Executor Performance
Response Metrics
8 @ Calculator
} LLM-assisted
Database Database output

...... - o]

SQL Select statement
>_ LLM LLM
Response

Eventlog | Gold standard

Prompt Event log

Fig. 1: Overview of our approach.

log. Upon receiving the expected input objects, our architecture automatically
proceeds as follows: on the given LLM, it executes the prompt, appending to
the prompt the database structure, and a request to generate an SQL script
as an output. Then, the LLM-generated SQL script is extracted from the LLM
response and executed against the database to produce the LLM-assisted event
log generation. Next, the LLLM-assisted generated event log is compared against
the gold standard event log for the particular database, and similarity metrics
are calculated. Finally, results can be manually analyzed and reported.

3.2 Materials

We define an architecture that handles four main input-objects: (i) a collection of
different LLMs to be evaluated; (ii) a variety of databases from which event logs
can be extracted; (iii) different prompt engineering strategies to instruct an LLM
about the event log extraction task; and, (iv) gold standard event logs, which
are previously known event logs extracted from each relational database to serve
as a benchmark for comparison against the LLM-assisted generated event log.
Next, we present further details about the materials used in this workﬂ

LLMs. In this work, we evaluated four different OpenAl models: GPT 3.5-
turbo, 4, 4-turbo, and 40. We chose OpenAl models because they have demon-
strated capabilities in natural language processing and code generation-related
tasks [9I25126], and because of its wide adoption [20].

An important aspect to have in mind regarding GPT is that OpenAl enables
users of their LLM API to reduce the intrinsic non-deterministic nature of their
models. This can be done by setting a feature called tempemtu’nﬂ to zero. To
minimize the randomness of the LLM responses we did so. Still, we learned that
the LLM did not always produce the same output given the same input. We
executed each test case (i.e., the combination of a prompt with a particular
database) three times, averaging the results.

Databases. For the database selection, we aimed at choosing databases fea-
turing diverse foreign key relations among the tables, as well as varied event

4 https: / /github.com/KiriBul0/event-log-extraction-for- process-mining
® |https://platform.openai.com/docs/guides/text-generation /


https://github.com/KiriBu10/event-log-extraction-for-process-mining
https://platform.openai.com/docs/guides/text-generation/

6 Stein Dani et al.

identification types, such as one event per row versus multiple events per row.
In addition, we also aimed at databases with different sizes in terms of the num-
ber of tables and columns. What is more, we created two simplified versions for
each selected database. We did so to enhance the generalizability of our findings,
thus making our work more reliable in terms of our performance assessment of
LLM-assisted event log extraction. The database selection also considered the
prompt size limitations of the LLMs. For this work, we selected four databases: a
synthetic purchase-to-pay (P2P) database, a real ERP system database [15], the
BPI2016 Challenge database [6], and a real-life database from UWYV (the Dutch
Employee Insurance Agency). Table [2] outlines key characteristics of these se-
lected databases. Versions 1 and 2 of each database are simplified versions of
their version 3. Next, we delve into further details about each selected database:

— P2P. A synthetic purchase-to-pay database, inspired by [15], to serve as a
basis for initial assessment of our experimental setup. This database par-
ticularly contributed to our understanding of the nuances in the differences
between the LLM-assisted generated event log and the gold standard. It con-
tains high-level information about orders, invoices, payments and shipment,
and enables the event data understanding under two case notions related to
the order and the invoice. Creating an event log for this database is straight-
forward due to the presence of only one-to-many foreign key relationships
among the tables. Also, each table holds one event per record. Thus, each
table represents events related to one particular ActivityID. The ActivitylD
of an event is therefore defined as the table name. In the most complex ver-

Table 2: Characteristics of the databases used in this work.

wn

g a Qm = T q>')=

. 13 |5 |7 |iE|

s |5 |2 |3 | |gE)

=} — = (] R =B

S |2 |5 |&8 |E |§ |g&|8

g H O O H < <yl !

Database > 3k 3k RS 3k S H* bon T
P2P V1 2 5 2 1 0 8 Yes
V2 4 11 2 1 0 13 Yes
V3 6 19 2 1 0 13 Yes
ERP V1 3 13 3 1 0 6 Yes
V2 5 18 2 1 0 5 Yes
V3 9 32 3 1 0 12 Yes

BPI2016 V1 3 42 2 >1 >1 30 No
V2 2 35 2 1 >1 250 | Yes
V3 5 s 2 >1 >1 280 | Yes

UWV V1 2 7 1 1 1 11 No
V2 3 17 2 >1 1 33 No

V3 5 23 2 >1 1 43 No




Event Log Extraction for Process Mining Using Large Language Models 7

sion of the database, version V3, also two tables are present containing clicks
and configurations that have no relation with any of the other tables. These
tables are added to observe how the LLM deals with unrelated information
that is given as input.

— ERP. A real ERP system database fragment, as first used by Li et al. [15].
This database holds more information about orders, invoices, payments, and
shipments, such as order items, shipment items, and many-to-many relations
between order and invoice. In addition, this database has information about
the customer. Thus, this database has three possible case notions, related to
order, invoice, and customer. Creating an event log for this database is equiv-
alent to the P2P database, with the difference that it holds many-to-many
foreign key relationships among the tables. The ActivityID is determined by
the table name.

— BPI2016. A database based on the BPI Challenge of 2016 [6]. In the BPI
Challenge of 2016 a dataset was used with several types of customer contact
data from UWYV. The database contains clicks on the UWYV website from
logged-in users and of not logged-in users, messages sent through the website,
calls to the call center and complaints from customers. This database has
two case notions, i.e., website sessions with a SessionID and the customers
with a CustomerID. Creating an event log for this database poses a different
challenge when compared to the previous ones, as there are tables with
multiple events per record. In this case, the ActivityID is determined by the
column names instead of the table name.

— UWV. The UWYV database is taken from a typical claim handling process ex-
ecuted by UWV. It combines tables from different information systems used
in the execution of the process. It contains a table with letters sent to cus-
tomers, a table with calls to the customer, a table with calls from customers
and a table with timestamps per step in the claim handling process. The
two case notions in the database are the customer and the claim handling
session, i.e., one customer can have multiple claim handling sessions. Creat-
ing an event log for this database poses different challenges when compared
to the previous databases, as there are no explicit foreign key relationships
among the tables and there are tables with multiple events per record.

Prompts. Inspired by the rise of a variety of prompt engineering strategies, Ta-
ble [3] shows seven prompts used in this work. The first five prompts are prompt
strategies inspired by literature [4J23|2427]. The sixth and seventh prompts,
are prompts collaboratively engineered by the authors of this study. The sixth
prompt leverages process mining and event log extraction-related knowledge
in an attempt to improve the LLM-based event log extraction assistance. The
seventh prompt leverages database-specific knowledge. On top of these prompt
strategies, a number of statements are always appended to each prompt in the
context of this work, in order to fit our automated experimental setup. These
statements form the Baseline prompt, and include statements such as “write
an SQL statement with the columns: CaselD, ActivityID and timestamp” and



8 Stein Dani et al.

Table 3: Examples of prompts used in this work. Prompts 1 to 5 are based on
prompt engineering strategies from literature. Prompts 6 and 7 are based on
process mining, and domain and data knowledge, respectively.

ID Prompt

1 Baseline

This prompt consists of the database schema and the prompt elements “write
a SQL statement with the columns: CaselD, ActivityID and timestamp” and
“return only the complete SQL query”. All other prompts used in this work
consist of the Baseline prompt, expanded with another particular prompt.

2 Persona [24]
Act as a Process Mining Specialist that is an expert in event log extraction.

3 Few-shot example [4]
Consider the following example of how an event log looks like when extracted
from a database with two tables: {Table A} {Table B} {Extracted event log}

4 Chain-of-thought [23]
Take a deep breath and think step-by-step in silence.
5 Tree-of-thought [27]

Consider three experts are collaboratively answering a request using a tree-
of-thoughts method. Each one of the three experts will share their thought
process in detail, taking into account the previous thoughts of others and ad-
mitting any errors. They will iteratively refine and expand upon each others’
ideas, giving credit where it’s due. The process continues until a conclusive
answer to the request is found. The request is the following.

6 Process mining knowledge.

[Note: This prompt is built using knowledge about process mining and event
log-related concepts such as case notion, activity labels, and timestamps.)

7 Custom-made.

[Note: For each database version, a fully customized prompt is created using
domain and data knowledge.

“return only the complete SQL query, nothing else should be part of the response”.
Apart from these statements, we conducted several experiments to test different
database-specific statements, such as “each record in each table represents at least
one event” and “if a table contains multiple columns containing a datetime for-
mat, then each of these datetime values is an event”, for the UWYV database; or,
“when a table does not have a column that contains the selected case notion, com-
bine the necessary tables to obtain this case notion”, for the BP12016 database.

Gold standards. In the context of this work, the gold standard is an event
log previously known to contain all the process instances of a particular case
notion. Two researchers were involved in manually creating the gold standards
separately. They wrote the SQL queries to extract the gold standard event log for
each database, and assessed each others work with the help of a third researcher.

To ensure the gold standards are created in a similar fashion, we first de-
termined a common strategy. For example, we assume that each record in a



Event Log Extraction for Process Mining Using Large Language Models 9

table is an event, except when multiple timestamps are present. In that case
each timestamp in a record defines an event. Secondly, when there is no column
present that could serve as the ActivityID, then the name of the table is used
as the ActivityID. When multiple timestamps exist in a table, we use the name
of the table concatenated with the name of each respective timestamp column
as ActivitylD. We added elements of our gold standard construction strategy to
the process mining knowledge prompt (prompt 6).

3.3 Performance Assessment

To analyse and assess the performance of the LLM-assisted generated event log,
we compare the responses for different combinations of database and prompt
against the gold standard defined for the database. In this work, we use three
performance metric calculation (PMC) strategies:

PMC,;. Inspired by [I], we calculate the precision, recall, and Fl-score by di-
rectly comparing the LLM-extracted event log L against the gold standard event
log G. We identify true positives (TP), false positives (FP), and false nega-
tives (FN) as follows: TP as GNL, FP as L\ TP, and FN as G\ TP. In the
context of this work, a TP is defined as an event in L that also occurs in G,
with exactly the same CaselD, ActivitylD, and timestamp.

PMC,;. Inspired by our observation that often when the Fl-score is zero in pre-
liminary results using PMCy, which is caused by ActivityIDs that do not match,
we devised PMC,. In PMCs, we calculate the relaxed Fl-score considering a
partial match between an event in L and an event in G, ignoring the ActivityID.
For example, consider an event as a triple (CaselD, ActivitylD, and timestamp),
event /; as (1001, “Create order”, 2024-06-02 12:37:40) in L, and event g; as
(1001, “order”, 2024-06-02 12:37:40) in G. In the relaxed F1-score calculation, we
accept [; as equal to g;. Note that the number of events in the comparison of the
generated event log with the gold standard event log can become smaller when
the ActivityID is ignored. Sometimes the ActivityID is the only distinguishing
element between two or more events. This effect is due to the set abstraction
we use in the comparison and has an impact on the calculation of the Fl-score
since the number of FNs can decrease.

PMCs. In further observations we identified that often when the F1-score is zero
for PMC,, this is caused by ActivityIDs that do not perfectly match syntactically,
but should do so semantically. We used the Levenshtein distance [I3] to calculate
the minimum number of edits necessary to transform the event from L to an event
in G. For each event, all elements are first concatenated, e.g., the event (1001,
“Create order”, 2024-06-02 12:37:40) from L becomes “1001;Create order;2024-
06-02 12:37:40”. This transformation is also done for all events from G. Next, for
each event in L the distance to each event in G is calculated. The similarity is
expressed as 1 minus the ratio between the number of edits and the length of
the longest of the two strings that are being compared, i.e., the gold standard
value and the generated value. If the similarity value is above a threshold value
of 0.75, we consider the match a TP; otherwise, it is an FP. The number of



10 Stein Dani et al.

FPs is calculated based on the size of the larger of the two event logs minus the
number of TPs. Inspired by [7], we selected the 0.75 threshold experimentally.
We manually identified that the balance between semantically similar words was
higher for the 0.75 thresholds than, for example, when using 0.8, which means
that if we had used 0.8 as a threshold, we would not have classified as TP events
that should have been classified as such.

4 Results

In this section, we discuss the results of our experiments. Table [4] provides an
overview of the result{’} We show the results for GPT 4o, which was overall the
best performing LLM used in this work. In total, we ran 252 API calls, as we
had 84 test cases (four databases times three versions per database times seven
prompts) that were executed three times each. In 25 out of 84 test cases (29.8%),
the LLM produced different results in the three runs. Differences between the
runs for a test case could be either small, indicating that only some of the events
have changed in the result, or also large. In Table[d we provide the average scores.

In the following sections, we report on the results of our experiments for
each specific database, providing detailed findings that form the basis for our
discussion section. Mind that whenever we say generated event log we refer to
the LLM-assisted generated event log.

4.1 P2P Database

The P2P database is a synthetic database which incorporates two case notions
(order and invoice). A key challenge for the LLM regarding this database is to
select one case notion and write an appropriate SQL query. In the custom-made
prompt (prompt 7) we specify a case notion, but for all other prompts the LLM
chooses one. Figure[2]shows the F1-scores for three versions of the P2P database.
For PMC; (cf., Figure , prompt 7 is the only one reaching an Fl-score of 1,
meaning only the custom-made prompt performs well. The other prompts per-
form poorly, with prompts 3, 4, and 6 reaching F1-scores between 0.4 and 0.8
and prompts 1, 2, and 5 doing the worst at zero. For PMCs (cf., Figure , the
LLM is performing much better, with perfect F1-scores for V1 and scores for V2
generally varying between 0.8 and 1.0 (with the exception of prompt 5). V3 does
not perform as well, with Fl-scores generally between 0.4 and 0.7, but with a
perfect score for prompt 7. For PMCj (cf., Figure , all Fl-scores are equal
or higher than the Fl-scores of PMCs, except for the process mining knowl-
edge prompt (prompt 6). Again, Fl-scores are highest for V1, followed by V2,
and then V3.

For PMC;, all prompts but the custom-made prompt perform badly due
to the LLM adding “ _created” to the ActivityID (e.g., the LLM generates an
ActivityID “order _created” instead of “order”). Note that we did not ask the LLM

5 We focus on the Fl-scores since precision and recall were very close in most cases.



Event Log Extraction for Process Mining Using Large Language Models 11

Table 4: Evaluation summary of database versions, with F1-scores for the three
different Performance Metric Calculations (PMC). The —oo symbol is used when
no valid event log was returned by the LLM. The greyscale cell-background goes
from black (F1l-score equals to zero) to white (F1l-score equals to one).

Database Prompt Vi V3
PMC; PMC, PMCs PMC; PMCs

P2p 1 NN 1.000 1.000 KON 0.667 0.647
2 R 1.000 1.000 JEOKON 0.588
3 (N 1.000  1.000 0.631
4 I 1.000 1.000 KON 0.765
5 I8 1.000 1.000 [EOK 0.000 0.588
6 1.000 0.000 0.449 0.590
7 1.000  1.000

ERP 1 0.000 0.000 [10:400 0.000 ~0.182
2 0.000 0.133 0.204 0.000 0.182 0.167
3 0.267 ~0.400 0.250 0.250 = 0.417
4 0.000 0.000 0.000 | 0.089 ' 0.267 0.000 0.182 (0472
5 0.000 0.000 [[0:400"| 0.364 0.364 0.000 0.182  0.306
6 0.000 0.000 ' 0.278 | 0.000 0.000 0.000  0.000  0.000
7

BPI2016 1 IO 0.067 | 0.000 0.000 0.005 0.260
2 0.067 JEEUM 0.067 | 0.000 0.000 0.000 0.038
3 0.000 [NNCCSH 0.233 0.000 [[0:421 0.000 0.043
4 0.067 UM 0.067 | 0.000 0.000 0.000 0.038
5 0.045 NN 0.122 0211 0211 0.000 0.029
6 0.022 JONEEN 0.038 | 0.000 0.000 —00  —00
7 1.000  1.000 1.000 1.000  1.000

UWV 1 1.000 1.000 1.000 [NUEEE] PEEN 0.959 0.913
2 1.000  1.000 1.000 |MUEEE] (PELN 0.959 0.913
3 0.000 ' 0.259 0.187 | 0.000 Nl 0.959 0.877
4 1.000  1.000 1.000 [NUEEE] (PELN 0.959 0.913
5 1.000  1.000 1.000 |UEESE (PR 0.959 0.913
6 1.000  1.000 1.000 0.959  0.935
7 1.000  1.000 1.000 1.000  1.000

to add this in any prompt, nor did we include it in our gold standard, which
as a logical choice simply uses table names as ActivitylDs when no dedicated
ActivityID column is available.

The mismatch in the ActivityIDs between the generated event log and the
gold standard may also explain why the PMCy and PMCj3 scores are better
for all prompts. PMCs ignores ActivitylDs, while PMC3 does not require that
ActivityIDs match 100% to be considered a true positive. Figure [2b| shows that
when the ActivityID is ignored, the Fl-scores are all above zero.

Another pattern that can be observed is the relation between database com-
plexity (V3 being more complex than V2, which is more complex than V1) and
the Fl-score, with more complex databases reaching lower scores. This implies
that next to a mismatch on ActivityID other mismatches are present. Further



12 Stein Dani et al.

1.0 =1 1.0 =1 1.0

0.8 | o8 | o8
N N

0.6 ig 0.6 ig 0.6

0.4 i o4 i o4

0.2 N 02 N 02
N il

0.0{— — — M| 0.0 NE | 0.0

—o0

i 234567 1234567 1234567

(a) PMCl (b) PMCQ (C) PMC3
Legend: NVv1i [Vv2 V3
Fig.2: P2P Fl-scores for the different used prompts and PMCs.

examining the generated event logs reveals that either the case notion is not
correctly derived (e.g., some events have InvoiceID as the CaselD instead of Or-
derID), or the generated event log incorporates irrelevant events. In other words,
events from tables that are present in the DB schema but do not have a relation
with an order (e.g., click events from a customer):

Mismatches in case notion and inclusion of irrelevant events also affect the
PMC;j scores, shown in Figure 2d Most PMC3 F1-scores are equal or higher than
the PMCs Fl-scores. Apparently the ActivityIDs are close enough to the gold
standard ActivityIDs to not negatively impact the Fl-score. This means that
the match between the ActivityIDs of the generated event logs are above the
threshold of 0.75. This is not the case for the process mining knowledge prompt
in combination with the databases V1 and V2. None of the ActivityIDs of the
generated event log come close enough to the gold standard which results in an
F1-score of zero. This is caused by the prompt itself, which requests the LLM to
create an ActivityID by concatenating the table name and the column name in
the situation that no other columns exist that could be the ActivityID. However,
this should only be done when at least two timestamp columns are present in
a table. Otherwise the name of the table should be used as the ActivityID. In
this case we only have one timestamp column, hence the LLM applied the wrong
part of the prompt.

4.2 ERP Database

The ERP database has a similar complexity to the P2P database, as can be
observed from the characteristics of both databases in Table [2l The biggest
differences are the additional tables, the many-to-many foreign key relationships
among the tables, and an extra case notion. The additional tables represent
order lines, payment lines, and shipment lines, which are respectively related to
orders, payments, and shipments. These additional tables are needed to connect,
for example, payments to invoices. In the P2P database this information was part
of the payment table.

The F1-scores for the three versions of the ERP database are shown in Fig-
ure The scores of PMC; are similar to those of the P2P database, with



Event Log Extraction for Process Mining Using Large Language Models 13

1.0 1.0 ] 1.0
N
0.8 0.8 | o8
0.6 0.6 §§ 0.6
0.4 0.4 N 04
N
N\l
|

0.2 JE 0.2
O.O%JE* 0.0 El
i 234567 1234567 1234567

(a) PMCl (b) PMCQ (C) PMC3
Legend: NVvi [Jv2 HV3

Fig.3: ERP Fl-scores for the different used prompts and PMCs.

o2t 1§, |

—o0

prompt 7 performing perfectly, but the other ones performing poorly with many
Fl-scores at zero. V2 of the database is performing slightly better, with a per-
fect Fl-score for prompt 3 and 7 but scoring below 0.4 for the other ones. We
see similar results for PMCsy, which performs slightly better, and PMCs, which
performs best in terms of the ERP database. However, both perform worse than
in the P2P database. Overall, the Fl-scores for V2 are generally better than for
V1 and V3. Prompt 7 consistently reaches F1-scores of 1, while the performance
of the other prompts varies greatly.

From the results of PMCs (cf., Figure [3b)), we gather that even ignoring the
ActivityID is not enough to generate an event log close to the gold standard.
Only the custom-made prompt performs perfectly, as it was designed to do. This
indicates that it is possible to write an effective prompt to support the event log
extraction for the ERP database. Moreover, the ERP database V2 stands out
in all the Fl-scores in Figure [3] Considering that V2 is a less complex and V3
is the most complex database, we again notice that there is a relation between
the complexity of the database and the F1-scores, as Fl-scores for less complex
databases are generally higher. In addition, we notice that the prompt type also
matters, as different prompts yield different Fl-scores for the ERP database.
Prompt type 3 (Few-shot example) relatively performs best compared to the
other prompt engineering strategies.

4.3 BPI2016 Database

The complexity in the BP12016 databases comes from having multiple columns
that can serve as ActivitylD and multiple timestamp columns per table, giving
the LLM more options to choose from. Figure[f]shows the different PMCs for the
three versions of the BP12016 database. The Fl-scores for PMC; are the lowest
of all the four databases, with all database versions performing poorly except
prompt 7, which again scores perfectly. There is even one F1l-score that could
not be calculated, namely prompt 6, which is depicted in the figure as a negative
value. The performance for PMC, varies greatly, with V1 scoring perfectly on all
prompts except prompt 6, where it scores 0.8. V3 scores around 0.7 for prompts 1
through 5 but again scores negatively for prompt 6. V2 performs worst, with



14 Stein Dani et al.

1.0 1.0 m| 10
0.8 0.8 sg 0.8
0.6 0.6 §§ 0.6
0.4 0.4 i% 0.4
0.2 0.2 Nl 0.2
0.0f%- L — B A m% 0.0 il 0.0 §=E
1 2 3 4 5 6 7 1 23 4 5 6 7 1 23 45 6 7
(a) PMCl (b) PMCQ (C) PMC3

Legend: Vi [Jv2 HV3

Fig. 4: BPI2016 F1-scores for the different used prompts and PMCs.

many Fl-scores at zero. This is different for PMC3, where V2 performs well,
with Fl-scores of 1 for all prompts except 3. Prompt 7 again scores perfectly,
but all other prompts perform badly for V1 and V3, all scoring lower than 0.3.

As for the Fl-scores that could not be calculated: the reason is that the
LLM did not return a valid SQL statement. Without a valid SQL statement an
event log cannot be generated. The generated SQL statement included a join
of two tables that both contained the column page action detail. This column
was selected as the ActivityID. Unfortunately, the SQL SELECT statement did
not specify from which table this column should be taken. This resulted in an
ambiguous column error.

Figures [4b] and [Ad show the influence of the ActivityID on the calculated
Fl-scores. The values of the PMCsy (cf., Figure are at least 0.6, except
for the database V2. This implies that for the V1 and the V3 databases when
the ActivityID is left out of the match, the generated event log resembles the
gold standard event log. The inverse of Figure [b] is visible in Figure In
this case, database V2 has high F1l-scores for nearly every prompt, while V1
and V3 have low scores. This effect is caused by the composition of the BP12016
database versions. V1 contains questions, messages and complaints. V2 contains
website clicks for customers who are known because they logged in and clicks
from unknown customers. V1 and V2 have disjunct sets of tables. In V3 all the
tables from V1 and V2 are combined.

Figure [AD] also shows that the LLM is capable of retrieving the correct Ca-
selD and timestamps for V1 and V3. Looking into the generated SQL statement
for V2, it is revealed that the LLM choose the wrong CaselD, i.e., SessionID in-
stead of CustomerID. In the PMCj3 Fl-scores in Figure [dc| the ActivityID plays
a role once more. Even though the LLM selected the wrong CaselD for V2,
the match is considered perfect, judging by the F1 scores of 1 for almost every
prompt. This turns out to be an artifact from the Levenshtein distance compar-
ison that is used in our PMCj3. The SessionlID for each event is very close to the
CustomerlID, i.e, both columns contain numbers that appear to be very similar.
The match result is just above the threshold for recording a T'P. If the threshold
would be lowered, then Figure [4c| would resemble Figure Finally, the PMCjy
Fl-scores for V1 and V3 in Figure are low because the LLM selected the



Event Log Extraction for Process Mining Using Large Language Models 15

wrong column as ActivitylD. The values of this column are, even with PMCs,
not similar enough to the ActivityIDs in the gold standard.

In conclusion, the LLM does not seem to handle the BPI2016 database well.
Either the wrong CaselD is selected (for V2) or the wrong ActivityID is selected
(for V1 and V3). For the timestamp, the correct column is selected by the LLM.
The complexity of this database mostly comes from having multiple columns
that can serve as ActivityID.

4.4 UWYV Database

The UWV database is from a typical claim handling process as executed by
UWYV. It combines tables from different information systems used in the exe-
cution of the process. The complexity of this database lies in the lack of direct
connections between the tables, as there are no tables containing foreign keys.
Next to that, there is one table containing multiple timestamp columns. Each of
these columns represents a different event.

Figure [5] contains all PMC F1-scores for the UWV databases. Most of the
F1-scores have the maximum possible value of 1. V1 especially, performs well,
scoring 1 for all prompts across PMCs, except for prompt 3 where it scores
below 0.3 for all three PMCs. V2 and V3 perform very well for PMC,; and
PMCs3;, mostly nearing the maximum scores, but experience more difficulty with
PMC;, where they score below 0.5 for prompts 1 through 5.

For all three PMCs, the LLM is capable of generating an event log that is in
line with the gold standard. In addition to the custom-made prompt (prompt 7),
the process mining knowledge prompt (prompt 6) also performs well. For the
UWYV database V1, most prompts work well, except for the few-shot example
prompt (prompt 3), which generates incorrect SQL statements referencing or-
ders and payments not present in the database. This only occurs for the UWV
database V1. For the other database versions the few-shot example prompt
(prompt 3) is interpreted as an example, as it should be.

1.0
0.8
0.6
0.4
0.2
0.0

—o00

N
i
i
N
N
A\
A\
N
i
i
N
A\
)
N

IS TERT TR TR RRRRIRRRRRTRY

123 4567 1234567 1234567

(a) PMC; (b) PMC, (c) PMCs3
Legend: Vi [v2 HV3

Fig.5: UWYV Fl-scores for the different used prompts and PMCs.



16 Stein Dani et al.

5 Discussion

After executing a variety of prompt strategies against a number of databases
with different structural characteristics, we have acquired two major insights.
First, we learned that prompt engineering strategies per se are not enough for
effective LLM-assisted event log extraction. Our results show that LLMs cannot
fully autonomously identify effectively what the desired event log should look
like, nor what case notion should be considered. Second, we learned that domain
and data knowledge can make LLM-assisted event log extraction effective. What
is interesting is that having domain and data knowledge, and being able to
transfer those to the LLM, can yield effective LLM-assisted event log extraction.
Particularly, if there is previous knowledge available about which specific tables
hold which event data, or if the LLM is provided with a couple of examples of how
the event log extraction should be performed, the outcome of the LLM-assisted
event log extraction becomes more effective.

Based on these findings, we can make three specific recommendations to
support the effective use of LLM-assisted event log extraction:

R1 - Combine prompt engineering strategies with domain and data
knowledge. Prompt engineering strategies such as persona, few-shot examples,
tree-of-thought or chain-of-thought should be combined with domain and data
knowledge to produce more effective results. Considering only the custom-made
prompts, which leverages domain and data knowledge, LLM-assisted event log
extraction could produce useful event logs in 100% of the times (36 out of 36
runs). In the context of our work, an event log is considered useful if its F1-score
is above 0.75 for either PMC;, PMCy or PMCs.

R2 - Do not rely on the first generated event log. If domain and data
knowledge are not readily available, be ready to test the generated event log
and go back to the LLM for refinement of the event log extraction. Considering
our results for all prompts (and not only for the custom-made prompt), LLM-
assisted event log extraction can produce useful event logs in 68.3% of the times
(172 of the 252 runs).

R3 - Use LLM-assisted event log extraction with parsimony. If you do
not know how to extract event logs and you need to start analyzing some particu-
lar process data, you can leverage LLM-assisted event log extraction considering
the recommendations R1 and R2. However, for more stable and precise process
analysis, double-check the event log extraction with a domain or data expert.

6 Conclusion

In this paper, we presented a first experimental setup to investigate the effec-
tiveness of LLMs in assisting event log extraction from a relational database.
We showed that there is no one-fits-all prompt engineering strategy solution for
databases with different structural characteristics and that domain and data
knowledge is still needed to yield satisfactory results. We also showed that if



Event Log Extraction for Process Mining Using Large Language Models 17

domain and data knowledge is available, one can actually benefit from an LLM-
assisted event log extraction, as it can create and adapt SQL scripts fast, enabling
business analysts to get to the process discovery and analysis step for process
mining faster. Our findings, therefore, show the potential for LLM-assisted event
log extraction. They pave the way for future human-as-a-tool in a human-LLM
interaction event log extraction system, where the user is actively asked by the
LLM for clarifications about domain and data related ambiguities, to diminish
the error-proneness inherent in event log extraction.

Naturally, our work is not without limitations. While our analysis involved
multiple databases to enhance robustness of our experiment, the relatively small
database sample size may impact the generalizability of our findings. Also, be-
cause of the limitations imposed by the prompt length. We, however, used a
diverse range of prompts and databases to ensure a systematic selection pro-
cess to cover varied scenarios. Moreover, we established clear data collection
and analysis protocols, which ensured consistency and reduced individual bias
in the interpretation of data. While we do not claim to provide a complete set of
test cases, with this work we provide an architectural basis for future research
to systematically assess other combinations of databases, prompts, performance
metric calculations, and large language models in assisting event log extraction
for process mining.

In future work, we aim at incorporating our findings into a multi-agent frame-
work for event log extraction, where data from different sources can be jointly
considered, and an LLM-assisted generation of object-centric event logs can also
be investigated.

Acknowledgements. Part of this research was funded by NWO (Netherlands
Organisation for Scientific Research) project number 16672.

References

1. van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to
process models — the automatic detection of inconsistencies. Information Systems
64, 447-460 (2017)

2. van der Aalst, W.M.P.: Process mining: Discovery, conformance and enhancement
of business processes. Springer (2011)

3. Berti, A., Schuster, D., van der Aalst, W.M.P.: Abstractions, scenarios, and prompt
definitions for process mining with LLMs: A case study. In: Business Process Man-
agement Workshops. Springer (2024)

4. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural
Information Processing Systems (NeurIPS). vol. 33. Curran Associates (2020)

5. Busch, K., Rochlitzer, A., Sola, D., Leopold, H.: Just tell me: Prompt engineering
in business process management. In: BPMDS. Springer (2023)

6. Dees, M., van Dongen, B.F.: BPI Challenge 2016 (2016)

7. Dijkman, R., Dumas, M., Dongen, van, B., Kaarik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Information Systems 36 (2011)

8. Finlayson, M., Ren, X., Swayamdipta, S.: Logits of API-Protected LLMs leak pro-
prietary information. ArXiv 2403.09539 (2024)



18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

Stein Dani et al.

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B., Zhou, J.: Text-to-SQL
empowered by large language models: A benchmark evaluation. Proceedings of the
VLDB Endowment 17(5), 1132-1145 (2024)

Jiang, A.Q., et al.: Mistral 7B. ArXiv 2310.06825 (2023)

Kasneci, E., et al.: ChatGPT for good? On opportunities and challenges of large
language models for education. Learning and Individual Differences 103 (2023)
Kourani, H., Berti, A., Schuster, D., van der Aalst, W.M.P.: Process modeling with
large language models. In: Enterprise, Business-Process and Information Systems
Modeling. Springer (2024)

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics-Doklady 10(8) (1966)

Li, C.Y., Joshi, A., Tam, N.T.L., Lau, S.S.F., Huang, J., Shinde, T., van der
Aalst, W.M.P.: Rectify sensor data in IoT: A case study on enabling process min-
ing for logistic process in an air cargo terminal. In: Cooperative Information Sys-
tems (CooplS). pp. 293-310. Springer (2024)

Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting
object-centric event logs to support process mining on databases. In: Information
Systems in the Big Data Era. Springer (2018)

Mustroph, H., Winter, K., Rinderle-Ma, S.: Social network mining from natural
language text and event logs for compliance deviation detection. In: Cooperative
Information Systems (CooplS). pp. 347-365. Springer (2024)

Nasr, M., Carlini, N., Hayase, J., Jagielski, M., Cooper, A.F., Ippolito, D.,
Choquette-Choo, C.A., Wallace, E., Tramér, F., Lee, K.: Scalable extraction of
training data from (production) language models. ArXiv 2311.17035 (2023)
Ollion, E., Shen, R., Macanovic, A., Chatelain, A.: The dangers of using proprietary
LLMs for research. Nature Machine Intelligence 6(1), 4-5 (2024)

Stein Dani, V., Leopold, H., van der Werf, J.M.E.M., Lu, X., Beerepoot, 1., Koorn,
J.J., Reijers, H.A.: Towards understanding the role of the human in event log
extraction. In: Business Process Management Workshops. Springer (2022)
Teubner, T., Flath, C.M.; Weinhardt, C., van der Aalst, W., Hinz, O.: Welcome
to the era of ChatGPT et al. Business & Information Systems Engineering 65(2),
95-101 (2023)

Thirunavukarasu, A.J., Ting, D.S.J., Elangovan, K., Gutierrez, L., Tan, T.F., Ting,
D.S.W.: Large language models in medicine. Nature Medicine pp. 1930-1940 (2023)
Touvron, H., et al.: Llama 2: Open foundation and fine-tuned chat models. ArXiv
2307.09288 (2023)

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., Chi, E., Le, Q.V.,
Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models.
In: Advances in Neural Information Processing Systems (NeurIPS). vol. 35, pp.
24824-24837. Curran Associates (2022)

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A.,
Spencer-Smith, J., Schmidt, D.C.: A prompt pattern catalog to enhance prompt
engineering with ChatGPT. ArXiv 2302.11382 (2023)

Wu, Y.: Large language model and text generation, pp. 265-297. Springer (2024)
Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Zhong, S., Yin, B., Hu,
X.: Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond.
ACM Transactions on Knowledge Discovery from Data 18(6) (2024)

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T., Cao, Y., Narasimhan, K.: Tree
of thoughts: Deliberate problem solving with large language models. In: Advances
in Neural Information Processing Systems (NeurIPS). Curran Associates (2023)



	Event Log Extraction for Process MiningUsing Large Language Models

